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Abstract A method is developed for optimizing the complex thermo-fluid phenomena that occur in welding
processes where fluid convection is present. A mathematical model of a typical welding problem which includes
conservation of mass, momentum and energy, and assumes that the process is steady in the frame of reference mov-
ing with the heat source is considered. An optimal control problem in which the heat input from the heat source is
determined to ensure a prescribed geometry of the weld is formulated and solved. The problem is solved with a gradi-
ent-based optimization approach in which the gradient (sensitivity) of the cost functional with respect to the control
variables is determined using a suitably defined adjoint system. An important aspect of the problem is that it is of the
free-boundary type. Therefore it is necessary to use methods of the shape calculus to derive the adjoint equations.
A number of computational results which validate our approach and feature qualitatively different flow patterns in
problems with different material properties are presented.

Keywords Adjoint equations · Fluid mechanics · Free-boundary problems · Optimization ·Welding

1 Introduction

Welding remains one of the most common joining processes in manufacturing. Joining of two workpieces occurs
as a result of solidification of the metal molten in the neighborhood of the contact area following application of a
heat source, such as a plasma arc, electric current, laser beam, liquid filler droplets, etc. [1, pp. 228–273]. Thus, the
mechanical properties of the resulting joint, such as its strength, uniformity, resistance to fatigue, etc., are determined
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by the complex thermo-fluid phenomena occurring in the weld pool. It appears therefore plausible that modifying
these phenomena by adjusting parameters of the heat source may lead to welds with more desirable properties.
Optimization approaches are now routinely used in various areas of science and engineering; however, despite the
ubiquity of welding in modern industry, few attempts have been made at rigorous and systematic optimization
of welding processes (e.g., [2]). This seems due to the great complexity of the mathematical models describing
the thermo-fluid phenomena occurring in such processes. An exception are approaches, such as in [3], based on
genetic algorithms and neural networks which treat the physical system as a “black box” and hence do not really
exploit the structure of the mathematical model. However, practitioners generally resort to ad-hoc trial and error
methods in order to “optimize” various aspects of the welding process. Interestingly, optimization methods have
found some application in determining unknown parameters of a welding process, thereby improving reliability of
the modelling [4]. Methods of optimal control have also been applied to the related problem of solidification of
alloys by Zabaras (see [5] for a review) and Hinze and Ziegenbalg [6]. In recent years important developments have
been made pertaining to the modeling and prediction of the behavior of weld pools under different conditions based
on first principles [7, pp. 21–76]. This also includes three-dimensional (3D) time-dependent problems involving
transient phenomena (e.g., [8,9]). At the same time, significant advances were also made in application of rigorous
methods of the Optimization Theory to solve control problem in fluid mechanics, such as drag reduction in open and
closed flows [10], data assimilation in numerical weather prediction [11, pp. 136–204] and jet-noise reduction [12]
to mention just a few. The reader is referred to the monograph [13] for a broad and up-to-date overview. Integration
of advances in these two areas offers the promise of a rigorous optimization of welding processes. Since models of
welding phenomena contain ingredients making their optimization significantly more complicated than for other
flow problems, the goal of this paper is to address some of these issues.

An optimal control problem consists in determining inputs for a system, e.g., boundary or initial conditions,
forcing, etc., such that the system evolution is optimal is some suitably defined sense. Hence, these problems belong
to the category of inverse problems which in practice are often solved computationally using optimization methods.
These approaches determine the optimal control input φ̂ and the corresponding optimal state û as minimizers of a
suitable cost functional j (φ, u) which measures the misfit between the actual and desired system output

(φ̂, û) = argminφ∈U , u∈X j (φ, u), (1a)

subject to G(φ, u) = 0, (1b)

where U and X are, respectively, the space of admissible controls and the state space, both of which will be assumed
to be equipped with a Hilbert structure, whereas G(φ, u) = 0 represents the equation of state [usually a system of
coupled partial differential equations (PDEs)]. Relations (1) represent a constrained optimization problem; however,
in the presence of equality constraints only, such as (1b), and subject to suitable differentiability assumptions, we can
write u = u(φ). This allows us to transform (1) into the corresponding unconstrained formulation by introducing
a reduced cost functional J (φ) � j (φ, u(φ)) (“�” means equality by definition). This approach thus yields

φ̂ = argminφ∈U J (φ). (2)

Since this unconstrained formulation involves optimization with respect to φ only, it is usually more efficient from
the computational point of view and hereafter we will focus on this approach exclusively (for brevity we will omit
the term “reduced”). As regards computational solution of PDE-constrained optimization problems such as (1) and
(2), there are two main paradigms referred to as “discretize-then-optimize” and “optimize-then-discretize”. The
relative merits of the two approaches are still a matter of debate [13, pp. 57–62]. In our investigation we will focus
on the “optimize-then-discretize” approach which, while being perhaps less direct from a computational point of
view, is more general in that it does not depend on the specific discretization used and is moreover more closely
related to the actual physical problem.

The minimizer φ̂ is characterized by the first-order optimality condition requiring that the Gâteaux differential
J ′(φ;φ′) � limε→0

1
ε

[J (φ + εφ′)− J (φ)
]

of the cost functional computed at φ̂ should vanish for all admissible
perturbations φ′ ∈ U , i.e.,

J ′(φ̂;φ′) = 0, ∀φ′∈U . (3)
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As regards differentials, we will follow the convention that the quantity given after the semicolon represents the
direction in which the differential is calculated. In fact, relation (3) is only a necessary condition. Sufficient condi-
tions would require the use of second-order differentials which for problems governed by models as complicated
as the one we will employ can be difficult to derive and compute numerically. Therefore, second-order conditions
will not be considered here. An iterative solution of an optimal control problem (2)–(3) can be expressed as the
following discrete initial-value problem in the control space U
{

φ(n+1) = φ(n) − τ (n)∇J (φ(n)),

φ(1) = φ0,
(4)

where φ(n), n = 1, . . ., are the consecutive approximations of the minimizer with the superscripts denoting the
iterations and φ0 is the initial guess. Equation 4 is solved until a critical point is reached, i.e., condition (3) is
attained. Formulation (4) corresponds to the steepest descent algorithm with τ (n), n = 1, . . . , representing the step
size chosen for every n as τ (n) = argminτ J (φ(n) − τ∇J (φ(n))). Replacing τ (n)∇J (φ(n)) with an expression of
the form An∇J (φ) + Bn , we can obtain any of the gradient algorithms used in practice, such as the conjugate
gradients or the quasi-Newton method [14, pp. 135–162]. Thus, calculation of the gradient ∇J emerges as a crucial
element of all gradient-based optimization algorithms and the present investigation explains how this can be accom-
plished for our model of the welding problem. We emphasize that the gradient ∇J represents the sensitivity of the
cost-functional J (φ) to infinitesimal perturbations of the control φ in the presence of a constraint G(φ, u) = 0.
Hence, for a problem in which the control φ is a function of space and/or time, the gradient ∇J is also a function
of space and/or time, and the problem is therefore infinite-dimensional.

In a general welding process, the state of the system u(φ) is the result of an interplay of the following physical
phenomena:

(a) heat conduction with change of phase (melting and solidification of the metal in the weld pool),
(b) liquid-metal convection with a free surface,
(c) buoyancy effects related to the difference in densities between the different phases (Boussinesq effect),
(d) surface-tension-driven convection (Marangoni effect),
(e) electromagnetic (Lorentz) forces due to the presence of electromagnetic induction,
(f) interaction of the free surface with the heat source (electric arc, plasma, etc.),
(g) mass transfer into the weld pool (e.g., via impinging droplets).

In the literature there is still some debate concerning which of the effects (a)–(g) are most important for reliable
modeling of different welding processes. In the present investigation we will focus solely on processes involving
fluid convection in the weld pool, such as Metal Gas Inert (MIG) welding [1, Sect. 7.1.1]. From the mathematical
optimization point of view, a crucial feature of this problem is that the geometry of the fluid domain depends on
the control input and as such must be regarded as a dependent variable. As will become apparent in the sequel,
this will have important ramifications for the calculation of the gradient ∇J . Our goal in this investigation is to
establish a generic framework that, from a mathematical point of view, accounts for the most important ingredients
of the problem. Such a template can then be adopted for a specific welding problem by incorporating appropriate
effects from amongst (a)–(g), and choosing a correct model of the heat source. In order to derive such a general
and versatile framework, we choose to include in our mathematical model effects (a), (b), (d) and (f) with a rather
simple model of the heat source. For the sake of simplicity of this generic model and in view the problem-dependent
nature of the phenomenon, the control will not involve mass transfer from the electrode to the weld pool. In general,
one can consider two distinct regimes as regards the modelling of welding processes:

– the transient regime occurring during the initial and terminal phases when the heat source accelerates/decelerates
and is close to one of the edges of the workpiece; in such conditions transient phenomena play a non-negligible
role,

– the intermediate steady regime occurring when the heat source is travelling with a constant velocity along
the joint and is at a large distance from the edges of the workpiece; assuming that the characteristic time of
displacement of the heat source is much longer than the characteristic time of melting and solidification, in such
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conditions the process may be considered statistically steady in the frame of reference attached to the travelling
heat source.

In the present investigation we focus solely on the steady regime in which the mathematical model may be assumed
time-independent resulting in a significant simplification of the solution of the inverse problem. The more general
and challenging problem of optimization of a welding process in the transient regime will be studied next (in fact,
some preliminary results concerning this problem obtained with a simple one-dimensional model were already
reported in [15]). Therefore, our goal in this work is to determine an optimal spatial distribution of the heat input
that will result in a steady (in the moving frame of reference) weld pool with a prescribed shape.

We emphasize that a main theme in this investigation is development of a gradient-based optimization algorithm
in the form (4), so a large amount of our attention will be devoted to identifying the structure of the gradient ∇J
in terms of the variables of the problem. As a result, all our manipulations will be formal, i.e., they will implic-
itly assume that all underlying functions are regular enough to ensure well-posedness of all transformations. The
important issue of proving existence, uniqueness and sufficient regularity of the relevant fields is outside the scope
of this paper and has been addressed elsewhere for similar, yet much simpler, problems [16, Chap. 2].

The structure of the paper is as follows: in the next section we introduce the system of partial differential equations
that will serve as our model for the typical thermo-fluid phenomena occurring in the weld pool; there we will also
state the specific control problem that we want to solve; in Sect. 3 we identify the cost functional gradients using
solutions of a suitably defined adjoint system; in the next section we present and discuss computational results;
final conclusions will be given in Sect. 5.

2 Mathematical model of a generic welding process

In this section we define a mathematical model of a typical steady-state welding process in a form amenable to
treatment as an optimization problem. In addition to stating the governing equations with appropriate boundary
conditions, this also requires specification of the subdomains on which different parts of the model are formulated.
The coordinate system is attached to the electrode (Fig. 1a) which travels with a constant velocity v0 = Uey , where
U is a parameter and ey is the unit vector aligned with the OY-axis.

2.1 Domains

As shown in Fig. 1, the domain of interest � ⊂ R
3 can be subdivided into the following two subdomains

� = �L ∪�S, (5)

where �L refers to the part of the domain containing the liquid phase, whereas �S refers to the part of the domain
containing the solid phase. The boundaries of the domains will be denoted by ∂�L and ∂�S . We also define the

LGΓ

SLΓ

SΓ

SGΓ

SΩ

LΩ

(b)(a)

0
-1

1
-1

0

0

1

-1

-2

x

z

y

Fig. 1 Schematic of the problem geometry: (a) panoramic sketch and (b) longitudinal cross-section of the workpiece with the weld
pool. In (a) the vertical cylinder represents the heat source (electrode)
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solid–liquid interface as �SL � ∂�S ∩ ∂�L as the boundary between �S and �L . The free surface of the liquid
domain (i.e., the liquid–gas interface) will be denoted by �LG , so that ∂�L = �SL ∪ �LG . The boundary of the
solid subdomain �S will consist of three parts: the solid–liquid interface �SL , the top surface �SG and the surfaces
�S representing the far-field boundary, so that ∂�S = �SL ∪�SG ∪�S . Without loss of generality, we will assume
that the unit normal vector n points into �L on the interfaces �SL and �LG , and out of �S on the interface �SG .
Hereafter we will employ the convention that, when stating generally valid relations, we will drop the subscripts
from the symbols denoting domains and interfaces. On the other hand, we will retain the subscripts in expressions
valid in a specific domain or on a specific interface only.

2.2 Conservation equations

Given the assumptions made in Sect. 1 regarding the physical effects to be accounted for in the model and the
assumption of steadiness in the moving frame of reference, we consider the following dependent variables:

– velocity v = [u, v, w] : �L → R
3,

– pressure p : �L → R,
– temperature T : �→ R,
– position of the free surface �LG ∈ S

2,

where S
2 is a set of smooth two-dimensional surfaces contained in R

3. We emphasize that the position of the
solid–liquid interface �SL is not a dependent variable, but is instead imposed as a constraint chosen to rep-
resent the engineering objective of an optimal penetration depth of the weld pool. The intersection of the two
interfaces �SL and �LG forms the contact line δ � �SL ∩ �LG . Now we proceed to derive the governing equa-
tions in the moving frame of reference. Let x and x̃ denote the position vectors in the moving and fixed coor-
dinate systems, respectively. Then, the velocities and temperatures in the two coordinate systems are related as
follows

T (x) = T (x̃ − t v0) � T̃ (t, x̃), (6a)

v(x) = v(x̃ − t v0) � ṽ(t, x̃), (6b)

where the quantities with the tildes (˜) are defined in the fixed coordinate system. The assumed steadiness in the
moving frame of reference implies that the time-derivative terms transform as follows

∂ T̃

∂t

∣∣
∣
x=const

= −v0 ·∇T, (7a)

∂ ṽ
∂t

∣∣∣
x=const

= −v0 ·∇v, (7b)

where the operator ∇ involves differentiation with respect to x. Thus, the process in the steady-state regime is
modelled by the following system of equations

ρ (v − v0) ·∇v −∇ · σ − ρg = 0 in �L , (8a)

∇ · v = 0 in �L , (8b)

(v − v0) ·∇T −∇ · (kL ∇T ) = 0 in �L , (8c)

−v0 ·∇T −∇ · (kS ∇T ) = 0 in �S, (8d)

where ρ is the density of the liquid metal (assumed constant), σ � −p I+ µ
[∇v + (∇vT )

]
is the stress tensor in

which I is the identity matrix and µ the dynamic viscosity, whereas g = (0, 0, gz)
T is the gravitational acceleration.

The coefficients kL and kS represent the thermal diffusivities of the liquid and solid phases. We note that Eqs. 8a
and 8b represent conservation of mass and momentum, whereas Eqs. 8c and 8d represent conservation of energy
in the respective domains.
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2.3 Boundary conditions

System (8) involves PDEs and therefore must be supplemented with boundary conditions for the velocity v and for
the temperature T .

2.3.1 Boundary conditions on the solid–liquid interface �SL

The velocity satisfies the no-slip (Dirichlet) boundary condition implying that v is equal to the velocity of the
boundary, i.e.,

v = v0 on �SL . (9)

As regards the boundary conditions for the energy equations (8c) and (8d), they require the temperature to be
continuous across the interface and satisfy the Stefan flux condition [17, Sect. 5.1], i.e.,

TS = TL on �SL , (10a)

−
[

k
∂T

∂n

]L

S
= L(v0 · n) on �SL , (10b)

where L is the latent heat of solidification and melting, where the expression [◦]L
S denotes the jump of the given

quantity across an interface (here �SL ).

2.3.2 Boundary conditions on the liquid–gas interface �LG

The liquid–gas interface is of the free-surface type and the boundary conditions for the momentum equation express
the balance between the stress in the fluid and the surface tension. We note that the surface tension f is an empirical
property of the material which is usually modelled as a linear function of the temperature T , i.e.,

f (T ) = f 0
m + A(T − Tm), (11)

where f 0
m is the surface tension at the melting temperature Tm and A is a constant. As regards the energy equation,

we prescribe the Neumann data for the temperature in terms of the space-dependent heat flux ϕ due to the heat
source. Thus, we obtain

[σ ]L
G · n = f (T ) κn −∇� f (T ) on �LG , (12a)

kL
∂T

∂n

∣∣
∣∣
L
= ϕ on �LG, (12b)

where κ � ∇ ·n is the mean curvature and ∇� � ∇−n ∂
∂n is the surface gradient [21, Chap. 8]. On the gas side there

are no viscous stresses, and the stress tensor is given in terms of the ambient pressure pa only, i.e., σ G = −paI.
We reiterate that the position of the interface �SL is also unknown and must be found as part of the solution to the
problem.

2.3.3 Boundary conditions on the solid–gas interface �SG

On the boundary �SG we only need to prescribe the boundary condition for the energy equation (8d), and choose
an analogous expression as on �LG [cf. (12b)], i.e.,

kS
∂T

∂n

∣∣∣
∣
S
= ϕ on �SG . (13)

We emphasize that the function ϕ : �LG ∪ �SG → R represents in fact the control input we seek to optimize.
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2.3.4 Far-field boundary conditions on �S

On the far-field boundary �S we need to prescribe the boundary condition for energy equation (8d) only, and assume
that the temperature is equal to the ambient temperature Ta there, i.e.,

T = Ta on �S . (14)

We conclude that a complete description of our typical steady-state welding problem is thus provided by system
of equations (8) together with boundary conditions (9)–(14).

2.4 Cost functional

In this subsection we introduce the specific cost functional that we want to minimize. As mentioned in the intro-
duction, engineering objectives in welding problems are usually related to the optimal shape of a weld joint after
solidification, which is to be obtained using the least possible amount of the thermal input. Therefore, our cost
functional is chosen so that its minimizers will be the optimal heat input distribution ϕ and the position of the free
surface �LG which result in a steady-state weld pool with a prescribed geometry of the solid–liquid interface �SL

J (ϕ, �LG) = γ1

2

∫

�SL

(T − Tm)2 ds + γ2

2

∫

�LG

V 2 ds + γ3

2

∫

�LG∪�SG

ϕ2 ds + γ4

2

⎛

⎜
⎝
∫

�L

dx − VolL

⎞

⎟
⎠

2

� γ1J1 + γ2J2 + γ3J3 + γ4J4, (15)

where V � (v − v0) · n. The term J1 ensures that the interface �SL is in fact a phase-change (Stefan) boundary,
whereas the term J2 guarantees the steadiness of the free surface �LG . The thermodynamic and mathematical
justification for these two terms was analyzed in detail in [17]; see also [18] for a more general discussion. The term
J3 ensures the energetic efficiency of the process by penalizing the L2(�LG ∪�SG) norm of the heat input, and can
also be interpreted as the Tikhonov regularization necessary for the mathematical well-posedness of the problem
[19, pp. 241–276]. The term J4 guarantees that the volume of the weld pool is close to the prescribed value VolL ,
and therefore could be used to account for the mass transfer into the weld pool. The parameters γ1, γ2, γ3, and γ4 are
used to adjust the relative significance of the different terms. We note that the control variable ϕ represents the actual
solution of the inverse problem we are interested in. On the other hand, the second control variable (the position
of the interface �LG) serves as an auxiliary variable allowing us to determine the location of the free boundary via
an optimization process. We found this to be a convenient alternative to other ways of computing free boundaries.
Thus, our optimization problem is given by (2) with φ = {ϕ, �LG} and cost functional (15).

3 Characterization of the cost-functional gradients

In this section we derive expressions for the gradients ∇ϕJ and ∇�LG J of cost functional (15) with respect to the
heat flux ϕ and the position of the liquid–gas interface �LG . We will derive those expressions using suitably defined
adjoint variables. A distinguishing feature of the problem described by (8)–(14) is that it is of the free-boundary
type, since the shape of the domain �L , more specifically its boundary �LG , needs to be determined as a part of
the solution of the problem. This fact has important consequences for how the differentials of the state variables are
calculated with respect to the control variables ϕ and �SL . The general framework for differentiation of solutions of
PDEs with respect to the shape of the domain is provided by the “shape calculus” whose main results are reviewed
in the monographs [20–22], whereas some applications to problems in fluid mechanics are surveyed in [23]. Below
we review the main elements of the shape-differential calculus relevant for the present problem, and refer the reader
to the aforementioned monographs for further mathematical details.

123



208 O. Volkov et al.

3.1 Elements of the shape calculus

When defining differentiation with respect to the shape of the domain the key challenge is a suitable parametrization
of the geometry. In the shape calculus perturbations of the boundary (interface) geometry can be represented as

x(τ, x′) = x + τx′ for x ∈ �(0), (16)

where τ is a real parameter, �(0) is the original unperturbed boundary and x′ : �→ R
2 is a “velocity” field charac-

terizing the perturbation. The points x(τ, x′) thus define the perturbed boundary �(τ, x′) (an expression analogous
to (16) could also be written for �(τ, x′), but is omitted here for brevity). We will use the notation �(0) � �(0, x′)
and �(0) � �(0, x′) (with suitable subscripts) for domains and their boundaries, respectively. The Gâteaux shape
differential of a functional such as (15) with respect to the shape of the interface �LG and computed in the direction
of the perturbation field x′ is thus defined as

J ′(�SL(0); x′) � lim
τ→0

J (�SL(τ, x′))− J (�SL(0))

τ
. (17)

Given cost functional (15), its shape differential (17) can be computed using a classical result concerning shape dif-
ferentiation [24] which says that for a smooth domain �(τ, x′) and smooth functions F and G defined, respectively,
on this domain and its boundary we have
⎛

⎜
⎝

∫

�(τ,x′)

F d�+
∫

∂�(τ,x′)

G ds

⎞

⎟
⎠

′

=
∫

�(0)

F ′ d�+
∫

∂�(0)

G ′ ds +
∫

∂�(0)

(
F + κG + ∂G

∂n

)
x′ · n ds, (18)

where a prime denotes the shape derivative defined as in (17) and n is the unit normal vector pointing out of the
domain �.

3.2 Differential of the cost functional

In order to identify the gradients (sensitivities) ∇ϕJ and ∇�LG J of cost functional (15) with respect to the control
variables {ϕ, �LG}, one must first obtain an expression for the Gâteaux directional derivative of J with respect
to these variables. We do this by combining standard differentiation with the shape differentiation described in
Sect. 3.1 which yields

J ′(ϕ, �LG;ϕ ′, x′) = γ1

∫

�SL

(T − Tm) T ′ ds + γ2

∫

�LG

V (v′ · n) ds

+
∫

�LG

[
γ2

(
κ

2
V 2 + V

∂V

∂n

)
+ γ4

(∫

�L

dx − VolL

)]
(x′ · n) ds

− γ2

∫

�LG

V (v − v0) · ∇�(x′ · n) ds + γ3

∫

�LG∪�SG

ϕ ϕ′ ds, (19)

where ϕ′ and x′ denote perturbations of the control variables. Without loss of generality, we will assume that the
perturbations of the boundary have a normal component only, i.e., x′ � ζ ′n, where ζ ′:�LG → R [21, pp. 350–360].
This assumption, which will simplify the form of the ultimate result, follows from the fact that the tangential com-
ponents of the perturbation x′ do not change the shape of the boundary when the contact line δ is fixed. Considering
Gâteaux differential (19) as a bounded linear functional with respect to {ϕ′, ζ ′}, and invoking Riesz’s theorem [25,
pp. 30–31] will allow us to extract the cost functional gradients ∇ϕJ : �LG ∪ �SG → R and ∇�LG J : �LG → R

using the following identity

J ′(ϕ, �LG;ϕ ′, ζ ′n) =
〈[∇ϕJ

∇�LG J
]

,

[
ϕ′
ζ ′
]〉

L2

=
∫

�LG∪�SG

(∇ϕJ )ϕ′ ds +
∫

�LG

(∇�LG J )ζ ′ ds, (20)
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where, for simplicity, the L2 inner product was used [27]. We emphasize that the gradient with respect to the heat
flux is defined on the entire top surface, not only on the free boundary �LG . We note that relation (19) contains
terms which are already in the Riesz form with the perturbations x′ and ϕ′ appearing as factors, but it also includes
terms involving perturbations of the other state variables, namely, v′, p′ and T ′. Because of the presence of these
latter terms, at this stage we cannot use relation (19) to identify the gradients ∇ϕJ and ∇�LG J . Therefore, our
goal in the following section will be to use suitably defined adjoint variables to transform the remaining part of
expression (19) into a form consistent with Riesz’s representation (20).

3.3 Adjoint system

We begin by writing a weak form of system (8)–(14) for the variables v ∈ {H1(�L) | v = v0 on �SL}, p ∈ L2(�L),
and T ∈ {H1(�L ∪�S) | T = Ts on �S}
∫

�L

[(v − v0) ·∇T −∇ · (kL ∇T )] T ∗ dx +
∫

�S

[(−v0) ·∇T −∇ · (kS ∇T )] T ∗ dx

+
∫

�L

[
ρ (v − v0) ·∇v −∇ · σ − ρ g

] · v∗ − (∇ · v) p∗ dx = 0, (21)

where H1 and H1 denote the Sobolev spaces of, respectively, scalar-valued and vector-valued functions with square-
integrable gradients [26, pp. 59–78], and we used the test functions v∗ ∈ {H1(�L) | v∗ = 0 on �SL}, p∗ ∈ L2(�L),
and T ∗ ∈ {H1(�L ∪ �S) | T ∗ = 0 on �S} (these test functions will be in fact identified later on as the adjoint
variables, hence we denote them with asterisks). After integrating the second-order terms by parts, relation (21)
becomes
∫

�L

T ∗ (v − v0) ·∇T + kL(∇T ·∇T ∗) dx +
∫

�S

T ∗ (−v0) ·∇T + kS(∇ T ·∇T ∗) dx

−
∫

�LG

kL
∂T

∂n

∣∣∣
∣
L

T ∗ ds −
∫

�SG

kS
∂T

∂n

∣∣∣
∣
S

T ∗ ds −
∫

�SL

[
k

∂T

∂n

]L

S
T ∗ ds

+
∫

�L

[
ρ (v − v0) ·∇v − ρ g

] · v∗ − (∇ · v∗) p + σ ∗ :∇ v dx −
∫

�LG

n · σ · v∗ds = 0, (22)

where σ ∗ � −p∗ I + µ
[∇v∗ + (∇v∗)T

]
and the colon (:) denotes the scalar product (contraction) of two ten-

sors defined as A : B = ∑3
i, j=1 Ai, j B j,i . Using now boundary conditions (9)–(14), we may simplify the weak

formulation (22) to
∫

�L

T ∗ (v − v0) ·∇T + kL(∇T ·∇T ∗) dx −
∫

�SL

L(v0 · n) T ∗ ds +
∫

�S

T ∗ (−v0) ·∇T + kS(∇ T ·∇T ∗) dx

−
∫

�LG∪�SG

T ∗ ϕ ds +
∫

�L

[
ρ (v − v0) ·∇v − ρ g

] · v∗ − (∇ · v∗) p + σ ∗ :∇ v dx +
∫

∂�L

(∇� · v∗) f ds = 0,

(23)

where we also employed the following identity of the shape calculus [21]

∫

∂�L

v∗ · ( f κn −∇� f ) ds =
∫

∂�L

(∇� · v∗) f ds.
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We now compute the variation of relation (23) with respect to the control variables {ϕ, �LG} in the direction given
by the perturbations {ϕ′, x′}. We remark that perturbing with respect to the shape of the free boundary �LG requires
us to use shape-differentiation, more specifically, formula (18), and the result is

∫

�L

T ∗ (v − v0) ·∇T ′ + T ∗ v′ ·∇T + kL(∇ T ′ ·∇T ∗) dx +
∫

�S

T ∗ (−v0) ·∇T ′ + kS(∇ T ′ ·∇T ∗) dx

+
∫

∂�L

(∇� · v∗) d f

dT
T ′ ds +

∫

�L

[
ρ v′ ·∇v + ρ (v − v0) ·∇v′

] · v∗ − (∇ · v∗) p ′ + σ ∗ :∇ v′ dx + I = 0 (24)

in which we denoted

I �
∫

�LG

[
∇ · (σ · v∗)+ κ(∇� · v∗) f + ∂

∂n

(
(∇� · v∗) f

)− (∇ · v) p∗
]

(x′ · n) ds

+
∫

�LG

[
T ∗ (v − v0) ·∇T + kL ∇�T ·∇�T ∗ − κϕ T ∗

]
(x′ · n) ds +

∫

�LG

f
n · σ ∗

µ
·∇�(x′ · n) ds

−
∫

�LG∪�SG

T ∗ ϕ ′ ds. (25)

We note that expression I collects only those terms in which the perturbations ϕ′ and x′ appear as factors. In (25)
we denoted σ · v∗ =∑3

j=1 σ i, jv
∗
j , and used also the following identity of the shape calculus [21, p. 367]

(∇� · v)′ = (∇� · v′
)+ n ·

[
∇v + (∇v)T

]
·∇�(x′ · n)+

(
∂∇� · v

∂n

)
(x′ · n)

= (∇� · v′
)+ n · σ

µ
·∇�(x′ · n)+

(
∂∇� · v

∂n

)
(x′ · n). (26)

As regards (26), we note that we could replace n·[∇v + (∇v)T
]

with 1
µ

n·σ , because the pressure term is orthogonal
to the tangential gradient ∇�(x′ · n), and therefore has no effect. We remark that the variation field T ′ might in
general be discontinuous across the interface �SL . However, after applying variations to boundary condition (10a)
one obtains

[
T ′
]L

S = 0 on �SL . (27)

Applying variations to the Dirichlet boundary conditions on the other fixed boundaries, i.e., relations (9) and (14),
yields

v′ = 0 on �SL , (28a)

T ′ = 0 on �S . (28b)

As a next step we integrate expression (24) by parts which gives
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∫

�L

[−(v − v0) ·∇T ∗ −∇ · (kL∇T ∗)
]

T ′ dx +
∫

�S

[
v0 ·∇T ∗ −∇ · (kS∇T ∗)

]
T ′ dx

+
∫

�S

kS
∂T ∗

∂n

∣
∣∣∣
S

T ′ ds +
∫

�SG

[
kS

∂T ∗

∂n

∣
∣∣∣
S
− (v0 · n) T ∗

]
T ′ ds +

∫

�LG

[
kL

∂T ∗

∂n

∣
∣∣∣
L
+ T ∗ (v − v0) · n

+ (∇� · v∗) d f (T )/dT
]

T ′ ds +
∫

�SL

{[
k

∂T ∗

∂n

]L

S
+ (v0 · n) T ∗ + (∇� · v∗) d f (T )/dT

}

T ′ds

+
∫

�L

[
−ρ (v − v0) ·∇v∗ + ρ v∗ · (∇v)T −∇ · σ ∗ + T ∗∇T

]
· v′ dx

+
∫

�LG∪�SL

(
ρ V v∗ + n · σ ∗) · v′ ds −

∫

�L

(∇ · v∗) p ′ dx + I = 0. (29)

We now observe that v∗, p∗ and T ∗ are the adjoint variables with respect to v, p and T provided they satisfy the
following adjoint equations

(v0 − v) ·∇T ∗ = ∇ · (kL ∇T ∗) in �L , (30a)

v0 ·∇T ∗ = ∇ · (kS ∇T ∗) in �S, (30b)

ρ (v − v0) ·∇v∗ +∇ · σ ∗ = ρ v∗ · (∇v)T + T ∗∇T in �L , (30c)

∇ · v∗ = 0 in �L (30d)

supplied with the boundary conditions

n · σ ∗ = −V (ρ v∗ + γ2 n) on �LG , (31a)

v∗ = 0 on �SL , (31b)

kL
∂T ∗

∂n
+ V T ∗ = −(∇� · v∗) d f (T )/dT on �LG , (31c)

kS
∂T ∗

∂n
− (v0 · n) T ∗ = 0 on �SG, (31d)

[
k

∂T ∗

∂n

]L

S
+ (v0 · n) T ∗ = −γ1 (T − Tm) on �SL , (31e)

T ∗ = 0 on �S . (31f)

Using relations (27) and (28), together with the definition of the adjoint system in (30) and (31), allows us to
simplify expression (29), so that we obtain

I = γ1

∫

�SL

(T − Tm) T ′ ds + γ2

∫

�LG

V (v′ · n) ds. (32)

On the right-hand side of (32) one recognizes two terms from expression (19) for the variation J ′(ϕ, �LG;ϕ ′, x′),
whereas expression (25) appearing on the left-hand side is already in the desired form with the perturbations ϕ′ and
x′ entering as factors. Indeed, after substituting (32) in expression (19) we get
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J ′(ϕ, �LG;ϕ′, x′) =
∫

�LG∪�SG

(
γ3 ϕ − T ∗

)
ϕ ′ ds +

∫

�LG

⎡

⎢
⎣∇ · (σ · v∗)+κ(∇� · v∗) f+ ∂

∂n

((∇� · v∗
)

f
)

+ T ∗ (v−v0) ·∇T + kL ∇�T ·∇�T ∗ − κϕ T ∗ + γ3
κϕ2

2
+ γ2 V

(
κV

2
+ ∂V

∂n

)

+ γ4

⎛

⎜
⎝
∫

�L

dx − VolL

⎞

⎟
⎠

⎤

⎥
⎦ (x′ · n) ds −

∫

�LG

V

[
f

ρ v∗

µ
+ γ2(v − v0)

]
·∇�(x′ · n) ds (33)

which is now consistent with the Riesz representation (20). Finally, after applying the tangential Green’s formula
[21, p. 367] to the term involving ∇� · (x′ · n), we are able to identify the cost-functional gradients as follows

∇ϕJ = γ3ϕ − T ∗ on �LG ∪ �SG , (34a)

∇�LG J = H + κD · n −∇� · D on �LG, (34b)

where

H = ∇ · (σ · v∗)+ κ(∇� · v∗) f + ∂

∂n

[(∇� · v∗
)

f
]+ T ∗ (v − v0) ·∇T + kL ∇�T ·∇�T ∗ − κϕ T ∗

+γ3
κϕ2

2
+ γ2 V

(
κV

2
+ ∂V

∂n

)
+ γ4

⎛

⎜
⎝
∫

�L

dx − VolL

⎞

⎟
⎠ ,

D = −V

[
f

ρ v∗

µ
+ γ2 (v − v0)

]
.

We remark that using the L2 inner product in Riesz identity (20) is not the only possibility, and in fact one may also
use other inner products, for example, the Sobolev H1 inner product which would lead to

J ′(ϕ, �LG;ϕ ′, ζ ′n) =
〈[

∇H1

ϕ J
∇H1

�LG
J

]

,

[
ϕ′

ζ ′

]〉

H1

=
∫

�LG∪�SG

(∇H1

ϕ J )ϕ′ + l2
[
∇�(∇H1

ϕ J ) ·∇�ϕ′
]

ds +
∫

�LG

(∇H1

�LG
J )ζ ′

+ l2
[
∇�(∇H1

�LG
J ) ·∇�ζ ′

]
ds, (35)

where l ∈ R
+ is an adjustable length-scale parameter. Identifying (33) with (35), and using some identities of the

tangential calculus, we arrive at

[I − l2��](∇H1

ϕ J ) = (∇ϕJ ) on �LG ∪ �SG, (36a)

∇H1

ϕ J = 0 on ∂(�LG ∪ �SG), (36b)
[

I − l2��

]
(∇H1

�LG
J ) = (∇�LG J ) on �LG, (36c)

∇H1

�LG
J = 0 on δ, (36d)

where �� is the Laplace–Beltrami operator [21, p. 365]. We thus see that, once the L2 gradients ∇ϕJ and ∇�LG J
are determined from (34), the Sobolev H1 gradients ∇H1

ϕ J and ∇H1

�LG
J can be obtained by solving elliptic bound-

ary-value problems (36) defined on the interfaces �LG and �SG . As shown in [17,27], the Sobolev gradients
are smoother and are useful for accelerating convergence of gradient-based optimization. These gradients will
be employed in Sect. 4 to determine the optimal heat input ϕ and the corresponding location of the liquid–gas
interface �LG .
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4 Results and discussions

In this section we present sample computations illustrating the approach developed in Sects. 2 and 3. First, we will
examine the gradient fields computed based on the adjoint system (30)–(31), and then we will show how these
gradients can be used to determine the optimal heat input ϕ and the corresponding shape of the free surface �SL .
In our approach we only need to solve the “direct” system (8)–(14) and the adjoint system (30)–(31) which is done
using the finite-element method implemented in the COMSOL script environment [28]. The domains �S and �L

are discretized using approximately 7000 unstructured tetrahedral elements with the mesh size varying from 0.04
to 0.7. In this investigation we employed only the Helmholtz, Navier–Stokes, and Arbitrary Lagrangian–Eulerian
Mesh Deformation solvers, while all the other software tools, including the optimization algorithm, were imple-
mented from scratch in the form of COMSOL scripts. In our computations we prescribed the solid–liquid interface
�SL , so that its shape and penetration depth correspond to engineering standards for good welds. The material
properties used in our calculations correspond to aluminum and are collected in Table 1. As regards the dependence
of the surface tension f on the temperature T [cf. relation (11)], it is known that it may be significantly affected by
the presence of impurities in the alloy. As was shown in [31], in some cases their effect may be such that instead
of d f (T )/dT < 0 (Table 1), one may in fact have d f (T )/dT > 0, and these modified material properties may
have a far-reaching effect on the recirculating flow pattern in the weld pool. In the absence of quantitative data
characterizing this effect for the material considered in this investigation (aluminum), later in this section we will
model it qualitatively only by reversing the sign of the parameter A in (11). We also remark that the values of
the weights γ1, γ2, γ3, and γ4 are chosen to ensure that the four terms in cost functional (15) have comparable
magnitudes. The initial guesses {ϕ(0), �

(0)
LG} for the optimization variables are

ϕ(0)(x, y) = 4× 103 e−10 (x2+y2), (x, y) ∈ �LG ∪ �SG , (37a)

boundary �LG indicated in Fig. 1. (37b)

Table 1 Values of the
physical and computational
parameters used in the
calculations [29],
[30, pp. 633–651]

Physical parameter Value

Thermal diffusivity of the solid , kS 8.418× 10−5 [m2 · s−1]
Thermal diffusivity of the liquid, kL kS/2 [m2 · s−1]
Melting temperature, Tm 933 [K]
Ambient temperature, Ta 300 [K]
Ambient pressure, pa 0 [Pa]
Density, ρ 2400 [kg ·m−3]
Dynamic viscosity, µ 0.1 [Pa · s]
Velocity of the heat source, U 0.01 [m · s−1]
Gravitational acceleration, g 9.81 [m · s−2]
Surface tension, f (T ) 10−3 (1024− 0.274 (T − Tm)) [N ·m−1]
Computational parameter Value

Length-scale in Sobolev gradients, l 0.001

Weight coefficient, γ1 10−5

Weight coefficient, γ2 1

Weight coefficient, γ3 10−9

Weight coefficient, γ4 104

VolL 1.04 × [volume of initial weld pool shown in Fig. 1b]
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(b)(a)

(d)(c)

Fig. 2 Gradient fields (a) ∇ϕJ , (b) ∇H1

ϕ J , (c) ∇�LG J , and (d) ∇H1

�LG
J obtained at the first iteration

4.1 Gradients of the cost functional

Sample gradient fields ∇ϕJ and ∇�LG J together with their smoothed counterparts ∇H1

ϕ J and ∇H1

�LG
J obtained at

the first iteration are shown in Fig. 2. We emphasize that, while the domain of definition of these gradients includes
the free surface �LG which is not flat, for the sake of clarity in Fig. 2 we show these gradients as functions of (x, y)

only. We observe that, as expected, the Sobolev H1 gradients appear much smoother than their L2 counterparts.
Next we proceed to demonstrate the consistency of the gradients ∇ϕJ and ∇�LG J obtained using expres-

sions (34). A standard test [32] consists in computing the Gâteaux differentials (i.e., the directional derivatives) of
cost functional J (ϕ, �LG) in some arbitrary directions ϕ′ and ζ ′, and comparing them to approximations of the
same differentials obtained with a forward finite-difference formula. Thus, deviation of the quantities

κϕ(ε) � J (ϕ + εϕ′, �LG)− J (ϕ, �LG)

ε〈∇ϕJ , ϕ′〉L2

, (38a)

κ�LG (ε) � J (ϕ, x|�LG + ε ζ ′n)− J (ϕ, �LG)

ε〈∇�LG J , ζ ′〉L2

(38b)

from unity is a measure of the error. We note that an equivalent expression would be obtained using the Sobolev
H1 gradients and the associated inner products. Figures 3 and 4 illustrate the behavior of the quantities κϕ(ε)

and κ�LG (ε) as a function of the parameter ε for different combinations of the weights γi , i = 1, 2, 3, 4. These
specific combinations are chosen to focus this analysis on the different terms in the cost functional J . As regards
the perturbations ϕ′ and ζ ′, we choose the same form for both of them given by

ϕ′ = ζ ′ =
{

0.1−√(x − xc)2 + (y − yc)2 (x − xc)
2 + (y − yc)

2 < 0.01,

0 (x − xc)
2 + (y − yc)

2 � 0.01,
(39)

which is centered at (xc, yc) = (0, 0) for the data shown in Figs. 3a and 4a, and at (xc, yc) = (0.15, 0.15) for the
data shown in Figs. 3b and 4b. We emphasize that in all cases the quantities κϕ(ε) and κ�LG (ε) are very close to the
unity for ε spanning over 10 orders of magnitude. As expected, Figs. 3 and 4 reveal an increase of the error for large
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Fig. 3 The diagnostic quantity κϕ(ε) for the perturbation ϕ′ centered at (a) (0, 0) and (b) (0.15, 0.15) corresponding to (circles)
γ1 = 1, γ2 = γ3 = γ4 = 0 and (squares) γ2 = 1, γ1 = γ3 = γ4 = 0

Fig. 4 The diagnostic quantity κ�GL (ε) for the perturbation ζ ′ centered at (a) (0, 0) and (b) (0.15, 0.15) corresponding to (circles)
γ1 = 1, γ2 = γ3 = γ4 = 0, (squares) γ2 = 1, γ1 = γ3 = γ4 = 0, (triangles) γ3 = 1, γ1 = γ2 = γ4 = 0, and (asterisks)
γ4 = 1, γ1 = γ2 = γ3 = 0

values of ε, which is due to the truncations errors, and also for very small values of ε, which is due to the subtractive
cancellation (round-off) errors. We emphasize that, since we are using the “optimize-then-discretize” rather than
“discretize-then-optimize” approach, the gradients should not be expected to be accurate up to the machine precision
[13, p. 120].

4.2 Solution of the optimization problem

Minimization procedure (4) is implemented using the steepest descent method [14, Chap. 3]. At every iteration the
length of the step in the descent direction is determined using Brent’s line minimization method. The following
algorithm summarizes the consecutive steps in this approach:

k ← 0;
ϕ(0)← initial guess (37a);
�

(0)
LG ← initial guess (37b);

repeat
solve direct (8)–(14) and adjoint (30)–(31) systems;
compute gradient ∇ϕJ (ϕ(k), x(k));
perform line minimization to determine the step-size ξ (k) min

ξ
J
(
ϕ(k) − ξ ∇ϕJ (ϕ(k), �

(k)
LG), �

(k)
LG

)
;

update ϕ(k+1) = ϕ(k) − ξ (k) ∇ϕJ (ϕ(k), �
(k)
LG);

solve direct (8)–(14) and adjoint (30)–(31) systems;
compute gradient ∇�LG J (ϕ(k+1), �

(k)
LG);
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(b)(a)

Fig. 5 Cost functionals as a function of the number of iterations for the case (a) d f (T )/dT < 0 and (b) d f (T )/dT > 0 with (asterisks)
total functional J , (circles) γ1J1 + γ3J3, and (boxes) γ2J2 + γ4J4 [cf. (15)]

perform line minimization to determine the step-size η(k) min
η

J
(
ϕ(k+1), x|

�
(k)
LG
− η ∇�LG J (ϕ(k+1), �

(k)
LG)

)
;

update �LG by deforming it along the direction ∇�LG J (ϕ(k+1), �
(k)
LG) with the step size −η(k);

k ← k + 1;
until max(| ξ (k)|, |η(k)|) < ετ ,

where ετ is a prescribed tolerance. We note that the descent steps for the control variables ϕ and �LG are performed
independently. The reason for this is that the part of the problem related to the optimization of the shape of the free
surface �LG is “stiffer” than the part related to the optimization of the heat input ϕ; hence the two parts are charac-
terized by quite different rates of convergence. Furthermore, we also observed that iterations can be significantly
accelerated if we set γ2 = γ4 = 0 during the substep involving minimization with respect to ϕ, and γ1 = γ3 = 0
during the substep involving minimization with respect to �LG . This strategy was used to obtain the results reported
below.

Figure 5 shows the decrease of cost functional (15) and its constituent terms as a function of the number of
iterations. We observe that the proposed algorithm results in a steady convergence despite the complicated nature
of the problem, although the rate of convergence is relatively slow (essentially linear). We also note that in both
cases the terms γ2J2 + γ4J4 reach a very low level which confirms that the problem of determining a steady
free surface �SL is solved with a sufficient accuracy. Different numbers of iterations required by γ1J1 + γ3J3

and γ2J2 + γ4J4 to reach a plateau illustrate the different rates of convergence characterizing optimization of
the heat input ϕ and the location of the free surface �LG . Next, in the following figures we examine certain fea-
tures of the solutions obtained when the iterations have converged. In Figs. 6 and 8 we show the distribution of
the temperature T in three different cross-sections of the weld pool and the workpiece in addition to the opti-
mal distribution of the heat flux ϕ on the top surface �LG ∪ �SG for the problems with d f (T )/dT < 0 and
d f (T )/dT > 0. In Figs. 7 and 9 we show the velocity vector fields in two cross-sections of the weld pool for
the same two cases with d f (T )/dT < 0 and d f (T )/dT > 0. In Figs. 7 and 9 we also include the velocity vec-
tor fields corresponding to the initial guess {ϕ(0), �

(0)
LG}. By comparing these initial guesses with the converged

solutions, one can see a significant decrease in the magnitude of the normal velocity components on the free
surface �LG which indicates that our algorithm indeed converges to a steady boundary. The relatively slow rate
of convergence observed in Fig. 5 can be explained by a rather modest resolution of the finite-element mesh in
the narrow wedge regions in the vicinity of the contact line. This affects the accuracy with which the gradient
terms involving partial derivatives of state variables can be evaluated in expressions (34). Remarkably, by com-
paring the flow patterns obtained in the cases with d f (T )/dT < 0 and d f (T )/dT > 0 (Figs. 7c,d, 9c,d), we note
that the recirculating motion in the weld pool has opposite direction in the two cases. This interesting feature of
this problem was discussed in detail in [31] (see their Fig. 18), and it is encouraging to see it is captured by our
approach.
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Fig. 6 Case with d f (T )/dT < 0: (a) optimal heat flux ϕ on �LG ∪ �SG and the corresponding temperature T distributions in the
cross-sectional planes with (b) x = 0, (c) y = 0, and (d) z = 0; in (a) the heat flux increment between neighboring isolines is 500
[deg · m · s−1]; in (b–d) the temperature increment between neighboring isolines is 150 [deg]; the solid and dashed lines correspond
to, respectively, ϕ > 0 and ϕ < 0 in (a), and to T > Tm and T < Tm in (b–d); for clarity, isolines are not drawn in areas with steep
temperature gradients
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Fig. 7 Case with d f (T )/dT < 0: the velocity fields corresponding to (a, b) the initial guess and (c, d) the converged solution in the
cross-sectional planes with (a, c) x = 0 and (b, d) y = 0
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Fig. 8 Case with d f (T )/dT > 0: (a) optimal heat flux ϕ on �LG ∪ �SG and the corresponding temperature T distributions in the
cross-sectional planes with (b) x = 0, (c) y = 0, and (d) z = 0; in (a) the heat flux increment between neighboring isolines is 500
[deg · m · s−1]; in (b–d) the temperature increment between neighboring isolines is 150 [deg]; the solid and dashed lines correspond
to, respectively, ϕ > 0 and ϕ < 0 in (a), and to T > Tm and T < Tm in (b–d); for clarity, isolines are not drawn in areas with steep
temperature gradients
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Fig. 9 Case with d f (T )/dT > 0: the velocity fields corresponding to (a, b) the initial guess and (c, d) the converged solution in the
cross-sectional planes with (a, c) x = 0 and (b, d) y = 0

5 Conclusions

In this work we solved an optimization problem for a welding process involving convection of liquid metal and
characterized by a complex interplay of a number of physical effects. This was achieved by developing a unified
approach to solving free-boundary and inverse problems in the steady-state regime. We did this by formulating this
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problem as PDE-constrained optimization. Advantages of such an inverse formulation of a free-boundary problem
analogous to the present one were discussed in [17]; see also [16] for a more general perspective. In the present
investigation we generalized this methodology by also performing optimization of actual control inputs, here the
heat flux ϕ. Our work demonstrates that these techniques can be successfully implemented numerically providing
quite encouraging computational results despite the complexity of the geometry and nonlinearity of the governing
equations. We envision a number of ways in which the approach developed in this paper can be further extended.
Firstly, one can incorporate a more accurate model for the interaction of the weld pool surface with the heat source.
Such a higher-fidelity model accounting for electromagnetic effects due to the presence of an electric arc and plasma
above the weld pool is already being implemented and the results will be reported separately. We also note that the
value of the dynamic viscosity µ used in our calculations (Table 1) is somewhat higher than the actual value. The
reason is that using the actual value would result in a higher Reynolds number which would require a significantly
finer mesh than what we can currently afford with our computational resources. On the other hand, we remark
that this increased viscosity might be interpreted as an “eddy viscosity” which is consistent with our formulation
of the problem as an idealized model for statistically steady solutions in the moving frame of reference. In our
future work we are planning to elaborate this aspect of our approach by incorporating a “proper” turbulence model
consistent with the use of an eddy viscosity. A related question concerns the stability of the computed solutions, in
particular, for higher Reynolds numbers. Another important challenge concerns the generalization of our present
approach to time-dependent problems. We note that cost functional gradients for free-boundary problems defined
in such settings can be derived using the “non-cylindrical calculus” [33, pp. 114–118] which provides a general-
ization of the shape calculus to time-dependent problems. We are currently investigating these issues and some
preliminary results concerning adjoint-based optimization of unsteady free-boundary problems using some simple
model systems were already reported in [15].
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